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~0. Introduction. The idea of  treating probability as a real valued function 

defined on sentences is an old one (see ['6] and [7], where other references can 
be found). Carnap's  at tempt to set up a theory of  probabili ty which will have a 
logical status analogous to that o f  two valued logic, is closely connected with it, 
ef. [1]. So far the sentences were used mainly from a "Boolean  algebraic" point 
of  view, that is, the operations that were involved were those of  the sentential 
calculus. (Th e  work of  Carnap and his collaborators does, however, touch on 
probabilities which are defined for special cases of  first order monadic sentences.) 

A measure on a sentential calculus which assigns real values to sentences is 
essentially the same as a measure on the Lindenbaum-Tarski  algebra of  that 
calculus, thus its investigation falls under the study of  measures on Boolean 
algebras. These were studied quite a lot;  see [3, 5] were other references are 
given. 

In this work the notions of  a measure on a first order calculus, and of  a measure- 
model,  are introduced and investigated. This is done not from a point of  view 
concerning the foundations of  probability but  with an eye to mathematical logic 
and measure theory;  the concepts with which we shall deal form a natural  gen- 
eralization of  the concepts of  a theory and a model in the usual sense. 

In §1 the not ion of  a measure on a first order calculus is introduced. In §2 the 
notion of  a measure-model is defined and a theorem analogous to the complete- 
ness theorem is proved. In §3 the case of  a calculus with an equality is treated. 
§4 is concerned with measure-models in which the measure is invariant under 
permutations of  the individuals, and §5 contains a specific example of  such a 
model. Whereas the propositions of  §§1, 2 are analogous to similar ones con- 
cerning theories and models (in the usual sense), §§4, 5 deal with situations 
which are typical to measures and measure-models and have no analogous counter- 
part.  

Received June 3, 1964. 

* The basic definitions and concepts of this paper were first presented by the author in a 
contributed paper to the 1960 Congress of Logic and Methodology of Science which took 
place at Stanford [2]. The paper contained part of the results appearing here. Other results, 
unpublished yet, were obtained since then by Ryll-Nardzewski, and presented by him in a 
t~k given at the International Symposium of Model Theory, 1963, which took place at 
Be~kel~,. 
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§1. Measures. Consider a first-order predicate calculus ~ ,  that is, a system 
consisting of  individual variables, individual constants and predicate constants, 
as well as the sentential connectives ~ ,  V, A , -~, - and the first order quan- 
tifiers t and V. ~ may or may not be with an equality. Let C be any set of  in- 
dividual constants, not necessarily belonging to ~3. ~(C) is the set of  all formulas 
formed using the individual variables, the predicates, the connectives and 
quantifiers of~3, and the individual constants of  C. g (C)  is the set of  all sentences 
(i.e., formulas without free variables) of  ~(C). ~o(C) is the subset of  ~(C) con- 
sisting of  all formulas in which no quantifier occurs, and go(C)  = ~:o(C) n g(C) .  
(Thus if C = ¢, go(C)  = ¢). 'k~ '  means that tk is logically valid. 

Now let C be the set of  individual constants of  ~ .  
By a measure on ~3 we mean a function # defined on a subset of g(C) 

having non-negative real numbers as values, and not vanishing identically, 
such that the domain of It, D#, is closed under sentential operations (i.e. if  
c~,~ e D# then ~c~, ?p V d/ etc. belong to DI~) and the following holds for all 
~ , ¢ e O # :  

(1) I f  t-~ and ~-~ then #(c~) = # ( ¢ )  

(2) I f  k ~ (dp A ~O) then #(dp V ~) = #((a) + #(~b) 

(1) and (2) imply: 

(1') If  t~, ~b e D# and t-~b - ~O then #(qb) = kt(~). 

Proof.  If  t-tk _= qt then k ~ (tk A ,-, ~0) and thus #(~b V ~ ~b) = / l ( ~ )  + # ( ~  ~). 
Since k ~(~ /A ~ ~,) we get /~(~ ~) = #(~ V ~ ~) - /~ (~) .  Since I-~ V ~ ~P we 
have #(~O V ~ ~,) = #(4~ V ~ ~O) hence #(4~) - #(~) = 0. (One can show that (2) 
alone or (2) together with the requirement/t(~b) = 0 whenever I- ~ 4~ do  not  suf- 
fice to get (1')). 

Thus, a measure can be conceived as a non-trivial, non-negative, finitely ad- 
ditive measure on a Boolean subalgebra of  the Lindenbaum-Tarski algebra of  
the sentences o f ~ , t h e  subalgebra being {~k/= l ~k e D#}, where ~k/--- = {q5 [ t-q~ - ~k}. 

A probability on ~3 is a measure # fo r  which #(~b)= 1 wheneoerc~ eD# and 
t-c~. 

One can consider also measures defined for formulas containing free variables 
as well, this however makes no essential difference, the statements and con- 
structions which follow can be modifiedin an obvious way to take care of  this case. 

The notion of  a probability is advanced here as a natural generalization to 
that of  a theory. Whereas in the case of  a theory one speaks of  sentences as being 
true or false, in the case of  a probabili ty a sentence has a certain probabil i ty 
which might in general be any number between 0 and 1. A theory is a probabili ty 
having only two values 0 and 1, the theory being complete if the domain of  the 
probability is the set of  all sentences. This analogy motivates the following de- 
finition of  a measure-model. 
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§2. Measure-models and the completeness theorem. Let C be the set of 
individual constants of ~ .  A measure-model for  ~3 is a pair ( U , m ) ,  where 
U ~ C , U  v~ O, and m is a measure on 6 o  (U). ( U , m )  is a probabil i ty-model  
iJ m is a probabili ty.  

A usual model consists in giving an interpretation to the predicates of the 
calculus as relations over a certain set U. This might be also described as a func- 
tion assigning the values 0 or 1 to every expression of the form R(a 1, '" ,  a,) where 
R is an n-place predicate of ~3 and a l , ' " ,  a, • U. In generalizing this we consider 
a function having values in [0, 1], but this in itself is not sufficient, since, in 
general, the values assigned to atomic sentences do not determine unique values 
for sentential combinations of these sentences. Hence one has to start from a 
probability defined on the whole of ~0(U). This, as it turns out, does determine 
a natural extension to ~(U).  

THEOREM I. Let ( U , m )  be a measure-model, then there is a unique measure 
m* which extends m to ~ ( U )  and satisfies: 

(3) If ~(x)•  ~(U) and x is its only free variable then 

m * ( ~ x  dp(x)) = sup{m*(VT=xdp(ai))] al,  . . . ,a,  • U} 

('V~'=t~b(ai)' stands for '~b(al)V "'" V ~(a,,)', and the supremum is taken over 
all f inite subsets of U). 

Proof. Since every measure can be made into a probability through multi- 
plying by a normalizing factor it suffices to prove the theorem assuming that m 
is a probability. It is easily seen that (3) is equivalent to: 

(3') If ~b(xl, "",xk)• ~(U) and xx, "-,xk are all its free variables then 

m*( 3x,  ... xkrb(xl, ..', xk)) = sup {m*(V,". =1 ok(a,,,,..., ai,k)) ] a,.x, ..., a,,,k • U) 

("  3x1"'" Xk" stands for "( 3xl) . . .  (3Xk)") 

For every U' __q U let ~ , (U' )  be the subset of ~(U') consisting of those for- 
mulas which are in prenex normal form with no more than n alternating blocks 
of quantifiers and, in case n > 0 and there are n blocks, the leftmost one consists 
of existential quantifiers. Let II,(U') be likewise defined except that in the case 
of n blocks, where n > 0, the leftmost one is required to be a block of universal 
quantifiers. Now assume m* and m* both extend m and satisfiy (3'). If m* 
and m* coincide on all sentences in H,(U) and O•  ] ~ , + I ( U ) n ~ ( U )  then 

= 3xl ... xkrk(xl ,..., xk) where ?P(xl, "" ,Xk)•  H,(U). All sentences of the form 
r~(ai,l,'",ai,k) are in H,(U) and every disjunction of sentences from H,(U) is 
logically equivalent to a sentence of H,(U), hence (3') implies that m*(~b) = m*z(~) • 
If f f e I I . + l ( U ) n ~ ( U  ) then ~g,  is logically equivalent to a member of 
]~.+I(U) n ~ ( U )  hence m* and m* coincide on ~ ~k and therefore also on ft. 

It  follows by induction that m* and m~ coincide on all sentences in 
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~n(U) ,  H,,(U), n = 0,1,  .... Since every sentence is logically equivalent to a 
sentence in prenex normal form we get m * =  m*. 

To prove the existence of m* we distinguish first the case where U is countable 
(i.e., of power < ~¢o). Let ~ be the set of all models (in the usual sense) whose 
universe is U (i.e., systems of the form (U, . . . ) ) .  For every ~b e ~(U)  let ~/(~) be 
the set of all models in which ~b is satisfied. ~1/(~ V ¢)=~ff/(ff)U~IJ/(~k) and 
~J~(,~b) =9J/-~g/(q~), hence {9J/(~) I q~ ~ ~o(U)} is a Boolean algebra of subsets of  
9J/and m induces on it a finitely additive measure m l given by: m l(~l~(~b)) = m(~b). 
ml is continuous, by which we mean that if X~, i = 1, 2, . . . ,  is a sequence of  sets 
of the Boolean algebra such that Xt+1 --- X~, i = 1,2, ..., and N~=IX~ = ¢ then 
lim~_.o~m~(X~) = 0. If  U is finite this is obvious. If U is infinite then it follows 
from the compactness theorem for the sentential calculus, which states that, 
for q ~ o ( U ) ,  i =  1,2,..., either there is an n for which ~- n ~ or 
[,.J~=l~J/(¢,) :/: 0; consequently a decreasing sequence of sets of the Boolean 
algebra has an empty intersection only if some member of it is already empty. 
As is well-known, cf. [4, pp. 74-80],  a cont inuous  measure  can be extended to  

a countably additive measure m* on the a-field (i.e. Boolean algebra of  sets closed 
under countable unions and intersections) which is generated by the sets of the 
Boolean algebra. Since for all 3xd?(x) in ~(U)  we have ~0/(3x~b(x))= 
[,.Jo ~ vflJl(gp(a)) it follows, assuming that U is countable, that, for all ~b v ~(U),  
93/(4) belongs to the a-field on which m* is defined. If we put m*(q~) = m*(~lT/(~b)) 
then m* extends m to ~(U) .  The countable-additivity of m* implies (3). 

Now let U be of any power. For every ~b ~ ~(U) let qS* be a logically equivalent 
formula in prenex normal form such that whenever ~b is in prenex normal form 
~b * = ~b, iftkl,~b2 ~ H~(U) then (q~ V q52) * ~ IIn(U) and ( ~  tk~)*~ ]~n(U). Define 
m* for sentences in prenex normal form, by induction, as follows: 

m*(~b) = m(¢) for ¢ ~ ~o(V) 

a # m*( ~ xt"" Xk¢(X~, "",Xk)) = sup{m*(V~'= ~¢(a~,~, ..., i.i)) I al.~,'",a,,~ e U} 

for dp(xl, "",Xk) e IIn(U), and m*(~b) = 1 - m*((~ if)*) for ¢ e rl~(U). 
Extend m* to ~(U) by putting ,m*(¢) = m*(¢*). It remains to show that m* 

is a measure on ~(U) .  
For every U' ~ U let my, be the restriction of m to ~o(U').  If U' is countable 

then my, has an extension m*, defined on ~ (U ' )  and satisfying (3) with respect 
to U'. If Tis any set of predicates of the calculus let ~ r (U ' )  be the set of all the 
sentences of  ~ (U ' )  all of whose predicates are in T. If  U~ _~ U2 and br~ =< Ro, 
then U2 is said to be an n-elementary extension of U~ with respect to T if 
m*2(~b ) = m*,(q~) for all ~b ~ ~n(U~). t3 ~r(U~), (from whichit follows that this is 
also true for all ~b~I-I~(u~)n~r(u~)).  Obviously if Ua is an n-elementary 
extension of  U:, and U2 and n-elementary extension of  U:, all with respect 
to T, then Ua is an n-elementary extension of U~. Let U~, i = 1,2,. . . ,  be 
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countable subsets of  U such that Ui + ~ is an n-elementary extension of Ui, i = 1,2,...,  
oo U all with respect to some fixed T, then, as we shall see, Uoo = [,_)i = 1 i is an n-ele- 

mentary extension of each U~. 
* on 1-10(Ui) n~r (Ui ) .  Assume First it is obvious that rn~o o coincides with each my, 

it coincides with each m*, on 1-Ij(Ui) n ~r(Ui) ,  j < n. Let ~b(Xa, "",xk) e IIg(Ui), 
.assume all its predicates are in T and X~,'",Xk are its free variables, for 
simplicity take k = 1. 

~m* "~/" 14~(a,))la 1, . . . ,a,e Uo~} mu~(3x4~(x)) = s u p  ~ u o o t v ,  = 

ern* ex/' ~4 ' (a3)  [ a l , ' " ,  a, e Ut}. m~(:lx~b(x)) = sup t v , ,v ,  = 

Since V~=lqS(at), where as, . . . ,a,  e Ui, is logically equivalent to a member of 
IIj(Ui) n ~ r ( U i )  and U~ ___ Uoo it follows that m*o (3x~b(x)) > m*v,(3xdp(x)). On 

~_ m r the other band, given e > 0, let ax, . . . ,  a, be such that rn*oo (~xc~(x)) < eoo(Vt = 
q~(at))+e, then, for some l > i ,  a l , . . . , a ,  eU~ hence mv,(3xdp(x) )+e> 

* r D'I* [ \ i t  = rnv,(V,=l~b(a,)) + e = v~o~v,=l~b(a,)) + e > m*o(]xck(x)). Since U~ is an n-ele- 
mentary extension of  Us we have m*,(3xck(x))= m*,(]xd?(x)). This proves the 

* and m* coincide on ~ j + l ( U i ) n ~ r ( U i )  opposite inequality. Therefore me, u~o 
hence also on 1-Ij+ t(Ui) o ~r(U,) .  

Finally we claim that given any n, any countable subset U' of U, and any 
countable set T o f  predicates,there is a countable W ~ U' such that m* coincides 
with m* on ]~,(W) n ~r (W) .  If  n = 0 put W= U'. Assume it to be true for n. 
For  every sentence ~b = 3xl ... x~ck(xl, "",xk), where ~b ~ I I (U)  for some l >  0, 
there is a countable set V(~b) such that 

rn*(~k) = sup {m*(V~= 1 q~(a,,1 , ' " ,  at,k)) ~ [ a l , , , ' " ,  a,,k ~ V(ff)} 

If  ~k is not of this form put V(~b) = ¢. We can also assume that if if ' is obtained 
from ~O by a change of bound variables then V(ff) = V(ff'). Put U~ = U' and 
let W~ be the countable subset including U~ such that rn*, coincides with m* 
on ] ~ . ( W ~ ) ~ r ( W x ) .  Put Uz = W~ W [,,J~,~r~,~ V(~). Since T is countable 
so is Uz. Extend Uz to W2 in the same way that U~ was extended to W1, 
then extend Wz to Us and so on. We get a sequence Ul,14'l,...,U~,W~,... 
in which U~_~ W~_= U~+~, i = 1 , 2 , . . .  and row,* coincides with m* on 
~.n(Wi) 0 ~T(Wi). Therefore, every W~+t is an n-elementary extension of 
W~ with respect to T. Put W =  t,)i=~a W~, then W is an n-elementaryextension of  
each PC/, therefore m* coincides with m* on ]~,(Wi) ~ ~r(W/) for all i, hence 
they coincide on ~ . (W) ~ ~T(PC). If  ~9 = 3 x~.. .  Xk(O(X~,..., X~), where ~b e 17.(W) 
and all its predicates are in T, then 

/ 7 ' / *  r rn~v(~b ) = sup { w(Vt=tdp(a,.~, ...,at,k)) l a 1.~, "",a,,k ~ W} 
since m* and m* coincide on 1-I,(W) O ~ r ( W )  it follows that m*(~b) is defined 
by taking a supremum over a bigger set hence m*(~b) => m*(~b). On the other 
hand ,  for some i,  ~k e ~r(W/) hence V(~)~_ W from which it follows that 
• m*(~b)< m*(~k), hence equality holds. 
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Now given any two sentences of ~(U),  ~, ~b, there are countable Tand Wand 
a number n such that ~b*,~,*,(~V~)*~ ~,(W) n ~ r ( W ) ,  and since every 
m~, is a measure this implies that m* is a measure as well. q.e.d. 

Note that (3) is equivalent to 

(3") m*(¥xc/ffx))=inf{m*(A =lck(a,))l al,...,a,e v}, for all sentences Vx~b(x). 

The inductive definition of m* which is based on (3') and used in the proof 
for the case in which U is uncountable, can be used to prove the theorem directly 
for both countable and uncountable U's; one has to show that m* is a measure, 
and this can be done by defining the transformation tk -~ ~b * in some particular 
suitable way, and using for the case where U is infinite some versions of  Her- 
brand's theorem. 

Note that the notion of an elementary submodel can be carried over to the 
case of measure-models as indicated in the proof of the theorem. 

Thus we get: 
A measure-model (Ul ,  m)  is a submodel o f ( U , m )  iS U 1 =_ U and ml is m 

restricted to ~o(U1). It is an elementary submodel if  it is a submodel and, for 
all c~ ~ ~(U1), m*(gp) = m*(c~), where m* and m* are the unique extensions 
of m and ml satisfying (3)for U and U1, respectively. 

(If (U~,m~) is to be a measure-model for the same calculus an additional 
stipulation should be made, to the effect that all individual constants of the cal- 
culus belong to U1.) 

The techniques involving elementary measure-submodels, of which some were 
used in the proof, are fully analogous to the techniques used for ordinary models, 
in particular: 

If ( U , m )  is a measure-model and U' _ U then U'can be extended to U" so 
that, if m" is m restricted to U",then (U", m") is an elementary submodel of ( U, m ). 
U" can be chosen to be of power not exceeding the maximum of No, U', and 
the power of the family of predicates of the calculus. 

As was pointed out in the proof of Theorem 1, every measure-mode! (U,  m )  
induces a measure on the Boolean algebra {M(q~)I~b e~o(U)},where M(~) i s  
the set of all ordinary models with domain U in which qb is satisfied. This measure 
is continuous and can be extended to a count=ably additive measure on the a-field 
generated by this Boolean algebra. In case U < N O this a-field contains all sets 
M(qS) where ~ z ~(U) ,  and m*(~) is equal to the value of the extension for M(~b). 
If U > No and we define m' by: m'(M(ck)) = m*(qb), ~ ~ ~(U),  then the compact- 
ness theorem implies the continuity of m'. (If ['~i'__.lM(~bi) # ¢ for all n, then, 
since every qb i involves only finitely many predicates and members of  U, there 
is a model with domain U in which all are satisfied, hence [ '~ lM(ckf)  ~ ~;). 
Therefore, in any case, m' defined as above is a continuous measure on 

e and as such can be extended to a countably additivomeasure 
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on the c-field generated by {M(~)]~, e 6(U)}.  On the other hand, if m' is a 
countably additive measure on the a-field generated by {M(~)[~ e 6(U)} and U 
is countable, then m", defined by: m"(d:)= m'(M(d:)), dp e6 (U) ,  satisfies (3). 
This is no longer true if U > No, since in that case every finitely additive measure 
on {M(~)[~ e 6(U)} is continuous and can be extended to a countably additive 
measure on the ~r-field, while one can easily construct measures on 6 ( U )  which 
do not satisfy (3). 

A measure-model ( U , m )  is said to determine the measure It (on ~),  i f #  is 
the restriction of m* to Dit, where m* is the unique extension of m satisfying(3). 
( U , m )  is said to be a model of It if it determines p. 

The following analogy to the completeness theorem holds. 

TH~OP,~M 2. Every measure .u on ~ has a measure-model whose power is 
No + the power of the set of all sentences of ~3. 

The proof of this theorem is analogous to the proof of the completeness theorem 
which uses the prime ideal theorem to extend an ideal in the Lindenbaum-Tarski 
algebra to a prime ideal. Here we extend a measure on a subalgebra to a measure 
on the whole algebra. We quote the following result [8, pp. 268-270]. 

(4) Assume ~ '  is a Boolean subalgebra of ~ and m is a measure on ~ ' .  For 
every b e ~ put m +(b) = inf{m(b')] b' ~ ~ ' a n d  b' >= b}, m -(b) = sup{m(b')lb'E~' 
and b' _-< b}. Then, given any element b ~ and any 0 _< 0 < 1, the equation 

m'(b.b '  +b.b") = Om+(b . b ' ) + ( 1 - O ) m - ( b . b " ) ,  b ' , b " ~ '  

defines a measure m' which extends m to the subalgebra generated by ~ '  and b. 
("  + " ,  " . "  and . . . . .  denote here the join, meet and complement operations 
in the Boolean algebra.) 

This together with the axiom of choice implies that every measure on a Boolean 
subalgebra can be extended to the whole algebra. 

Proof of Theorem 2. Let Co be the set of individual constants of ~ .  For 
every sentence ~b of 6(Co) of  the form 3x ~b(x) let % be a new individual constant, 
a~, ~ a~2 if ~bl # ~b2. Let C1 be the set of all % thus obtained; in general let 
Ci +1 be the set of all individual constants %,where ~b E 6 (U]=1  c j ) -  6 ( U  ~-- ~ c~) 

oo and is of the form 3x¢(x). Put U = Ui=oC~. 
Let 6 '  be the set of all sentences in 6(U)  of the form 3x~k(x)-> d/(%) where 

¢ =  xO(x). 

For all ~ ~ 6 (U)  let o / -  be the element of the Lindenbaum-Tarski algebra 
represented by ~r. Let ~ be the whole algebra {~/= ]~ ~ 6(U)} and ~ '  the sub- 
algebra generated by {~/--- l aEDit  U 6 ' } .  Every element of ~ '  is of the form 
(#1A @~) V-'- V(~, A @~)/= where a~DI t ,  i = 1,...,n and @l is of the form 
Aj~b~,~ where, for every j, ~'~,s ~ ~ '  or #~,~ is a negation of a member of ~ ' .  Let 

be the ideal in ~B generated by all elements of the form ~ ~b/= where ~b ~ 6 ' .  
Assume that o e 6(Co) and o / - ~ ~ .  There are z~'s which are negations o f  mere- 



8 H. GAIFMAN [March 

bers o f ~ '  so that b 0. -~ V~-- t~l. Let ~t = ~ ( 3x ~i(x) ~ ~(a~,)), where~b~ = 3x~i(x), 
and we can assume that tk~ # Sj for i # j .  Let a, ,  e Ck,; assume, with no loss of 
generality, that kn > k~ for all i < n. It follows that a , ,  does not occur in 0. as 
well as in any zi where i # n,  hence, using well-known rules of  first order logic, 

•--1 we get t-0. ~ (3x$~(x)A Vy ~ Sn(y)) V V i= l zi. I f  n = 1 we get F ~ 0., otherwise 
n - I  I- 0. ~ Vu= t z~ and by continuing the argument we get t- ~ 0.. This implies that, 

for all 0.1,0"2 e ~(Co),  (0.1 / =-)/~ = (0.2/=)/~ iff F 0.1 = 0.2. For every ~b / = E ~ '  
there is ~ e D #  such that ($/---) /~ = ( ~ / = ) / ~ ,  consequently one can define a 
measure p'  on ~ ' / ~  by putting It'(tk / = ) / ~ )  = It(~b), where $ ~ Bit is such that 
(tk/=-)/~ = ( ~ / = ) / ~ .  Now extend #' to a measure It* on ~3/~. Define m* by 
m*(~b) = t t* ( ($ /=) /~) ,  for all ~k~.~(U). m* is a measure on ~(U)  for which 
m*(~x~b(x) ~ $(a,)) = 1 whenever ~b = 3x$(x) .  Consequently m*(3x~b(x)) 
< m*($(a,)) ,  since the opposite inequality holds trivially one gets m*(3x~b(x)) 
= m*($(a,)) ,  from which it follows that m* satisfies (3). m* coincides with It on 
Dit, hence if m is the restriction of m* to Co(U), then (U,  m ) is a measure-model 

for It. q.e.d. 
Note that the measure-model constructed in this proof has the additional 

property that for every sentence 3x~b(x) in ~(U)  there is a member a e U such 

that m*(3x ~(x)) = m*(~(a)). 

§3. Strict equality. Let (U,  m )  be a measure-model for ~ and assume 
that ~ has an equality, = .  (U ,  m ) is a model with strict equa lity iJm(a = a')  = 0 

whenever a ,a '  ~ U and a ~ a' .  

TrtEOREM 3. Let ~ be a first-order calculus with equality, and let C be the 
set of  individual constants of ~ .  I f  I~ is a probabili ty defined for  all sentences 
o f ~  , then a necessary and sufficient condition[or It to have a probabili ty-model 
with strict equality is: 

(5) For all a, a' ~ C, a ~ a' implies It(a = a') = O. 
(6) For every k, It(~Xx ""x~Vy(Vk=~Y =x~)) is either 0 or 1. 

We formulate the theorem in terms of probability rather then measure only 
for the sake of convenience. The theorem remains true if 'probability' is replaced, 
throughout,  by 'measure' provided that,  in (6) '1 '  is replaced by It(~bV ~~b), 

where ~b e D#. 

Proof. The necessity of  (5) is obvious. Since t-A~<~A~__<~+~(a~ a~)--} 
~ ~x~-.. x~ Vy(V~= ~y - x~)(where "at  ~ a / "  stands for " '~  a~ = a ," ) ,  it follows 
that if ( U , m )  is a probability-model with strict equality then 
m*(,~ ~x t . . . x~Vy (V~=ly  =x~))= 1 whenever m* is an extension of  m and 
k < rff. I f  k > U, say U = {a~, ...,a~}, k >_-j, then F V~=t a = a~ for all a e U, 
hence if m* is the unique extension of  m satisfying (3), m*(Vy(V~ = ~ y --- a~)) = 1, 
which implies m* (~Xx "" xz Vy ( V ~ t Y  " x~)) = 1. Therefore (6) is necessary. 
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The sutticiency of (5) and (6) follows from: 
(7) Let U be any set of individual constants and m a probability on ~(U) 

satisfying (6), such that for all at,a2 ~ U, at # a2 implies m(a t ffi a2) = 0. Then 
either m( ~x($x)) = sup{m(\/'~=t~b(a3) l at,...,a, ~ U} for all sentences 3xd/(x) in 
~(U),  or else, given any particular sentence ~xtp(x) one can add a new indi- 
vidual constant, a', to U and extend m to a probability m' on ~(U') ,  U' = U U {a'}, 
so that, for all a ~ U, m'(a --- a') = 0 and m'(3x~(x)) = sup{m'(V~=t~k(a3 
lal,...,a, eU'} .  

Once (7) is proved the proof of the existence of a probability-model with strict 
equality follows the same lines as the proof of Theorem 2. Namely, putting 
Co = C we define C~ as before, and we keep adding step by step the new constants 
a¢ and extending the probability according to (7), so as to make it satisfy (3) 
for the particular sentence ~b. This is done for every Ct by transfinite induction. 
Either we get at some stage a probability already satisfying (3) or else the process 

C can be carried on and we get such a probability on [..J~=0 ~. The probability- 
model thus constructed determines/t and is with strict equality. 

Proof of(7): If, for some k, m( ~xt...x~ Vy(V ~= ~ y = x3) = 1 let ko be the smallest 
k of this property. Then (since re(at = a2)  = 0 whenever a t # a2) O =< k 0. If 
~/= ko, say U = {at,'",ako}, we get 

A,< jAj  = a j) A Vy(V °:,Y = x,)-* [ s O(x) --- V[°_- t0(a,)] 

which implies that m satisfies (3) with respect to U. Thus we can assume that either 
< ko or, for every k, m(3xt...Xk Vy(Vi k t Y = x3 )=  0; each of these implies 

that m(Vy(\/'~=ty -ai))=Owheneveral, ...,a, ~ U.Assume a' ~ U, U '=  Uu{a '} ,  
and let ~1 be the set of all sentential combinations of sentences from ~(U) and 
sentences of the form a'  = a, a e U. Let ~ ,  ~1, ~ '  be the Lindenbaum-Tarski 
algebras of ~(U), ~1, ~(U') ,  respectively, and ~ the ideal of ~ i  generated by 
{ a ' = a / - [ a ~ U } .  For every ~ 6 1  there is a ~be~(U) such that 
(d?]-)/~ = ( ~ / - ) / ~ .  Assumethat ~ e ~(U)and~b/-  e ~,then~-~--,V~% la '  ffi a~ 
for some a l , . . . , a ,  in U. Since a '  does not occur in~b we get }%b-, V n Y(V,=lY =ai), 
hence m(t~) = 0. It follows that one can define a measure rh on ~ t  [~ by putting 
~((~/---)/~) = m(~), where ~ e 6(U) is such that ( ~ / - ) / ~  = ( ~ / - ) / ~ .  Now 
put mo(~)= r~((~/=)/~) ,  then m o extends m to ~1 and mo(a' = a ) =  0 for 
all a e U. 

Given a sentence of ~(U) of the form 3x$(x) put ~ =  m(3x~(x)), 
~/= sup{m(\/ff=t~(b3)l bl, '" ,bke U} and let at, a2,'..,a,,.., be a sequence of 

i n n members of U such that rt = 1 m,_, ~ m(V~ = 1 ~(ai)). Put  ~,  -- ~ ( a ' )  A A~ -- ~ ~ ~(a~). 

We claim the following statement: 
(8) If ~ '  is a Boolean algebra, ~ I  a subalgebra, mo a measure on ~1,  and 

Yt,~2,"" a sequence of members of ~ '  such that Yi-~ Yi+l, i = 1,2,..., then mo 
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can be extended to a measure m' on ~B' so that m'(?~)= m+(?t) for all ~,~ 
(rn~" is defined in (4)). 

To prove it we use (4). Let ~B t be the subalgebra generated by ~1 and 
{?l, "",?~}. First extend mo to a measure m t on B 1 so that m1(6 "~1) = m~ (6"?1) 
for all 6 • ~x ; continue this process, extending rn~ to a measure ms+ x on ~3 i+ t so 

= mi (6 "?~+1) for all 6 • ~B ~. Finally let moo be the measure that ml+x(6"?i+x) + 
defined on [,,j~o= I~B~ which coincides with each mi on ~3 ~ , and take m'  to be any 
extension of  moo to ~B'. All that is required to show is that m+_l(~i)= m~ (?l), 

+ 
i = 1 , 2 , - - - .  It  suffices to show that rnj(?~)=mf_x(?~) for all j < i .  
m~(?t)= inf{mx(6) [ 6 • ~3 l& 6 > ?~}. If  6 •~B 1 then 6 = 6 "  ?1 -I- 6 #. fix where 
6', 6"e  ~ 1 .  Since 71 > ?i we get: 6 > ?~ iff 6 ' >  ?i, hence m l+(?i) = inf{ml(6" ?x)l 
6 e ~ x &  6 > ?,}. For6 e ~31,m1(6"?1) = mo+(6"?1) =inf{mo(6')[6' e~Bx&6'>-&r} 
therefore m~ (?,) = inf {inf {too(6') [ 6' • ~3x& 6' > 6 .  ?x} [ 6 • ~B1 & 6 > ?,} 
= inf{mo(6')] 6 ' ,6 e ~ l  &6'  > 6"?x &6 > ?t}, where the last infimum is taken 
over all 6,6'  satisfying the conditions. But since Vx > ?~ this last expression is 

= mo(ri), hence m~(?~)= rno+(r~); actually inf{mo(6')[6 '  e ~31&6' > r~}, that is, + 
the proof for any j < i is the same. (A somewhat less obvious argument proves 
also the statement obtained, from (8), by requiring ~ < ?i+ 1 instead of 3'~ > ?~+ 1, 
i =  1,2, . . . . )  

Using (8) where ?, = cr, / = ,  n = 1,2,.. .  (obviously l- an + 1 "" a,) one derives the 
existence of  a probability m' on ~ (U ' )  which extends mo and satisfies, for every n, 
m'(a,)=inf{mo(dp)ld~e~x&t-a, .-- ,q~}.  Assume I-a,---,~b where ~be~1.  ~b is 
logically equivalent to a sentence of  the form V~ ~Kb~ A z,(a'), where ~b, • ~(U)  
and %(a') is a conjunction of  sentences of the form a '  - b and negations of  such 
sentences, b • U. Let 11 be the subset of I consisting of all i 's for which all the 
conjuncts of  ~(a ' )  are of  the form a' ~ b, and let bl, . . . ,b ,  be all the members 
of  U which appear in some conjunct of some ~(a ') ,  of the form a '  -- b,. Then 

k ~ . .~  I-a. A A~=la ~ bi Viel,((9i A zi(a')). Replacing a '  by x and taking exis- 
tential generalization we get (since a '  does not occur in ~b or in ~bi) 

k X b(~x(~k(x) A Ai=I  ~ bi)) A A~=1 "-~ ~(ai) ~ k/i ~ (~i A ~xz~(x)) therefore 
I" ]x~(x)  A A~=I ~ ~k(bi) A ~ = 1  ~ ~k(ai)-- Vi~ r~(tk~ A ]xzi(x)). mo(z~(a')) = 1 
for i • Ix hence, the value of mo for the right side of  the conditional is m o(V ~ ~ ~ the), 
which implies rno(V~ ~ ~ )  > mo(]x~(x)) - mo(V/~= l@(bi) V V~'= l~(a~)) => ~- r /  
hence mo(q~) > mo(k/~ ~b~) > ~ - ~/. Consequently m'(an) > ~ - rl, which yields 
m'(~/(a') VV~'=lff(a~))> mo(k/~=~b(al))+ ~ - r / .  Letting n--* oo one gets 
lim~_, o~m'(~k(a') V V'I= l@(ai)) >= ~. This concludes the proof. 

Note that, unlike the proof of  Theorem 2, the construction used in this proof  
does not guarantee that for every ~x~(x) there is a member a of  U for which 
m*(]x~(x))  = m*(¢(a)). This is no accident. Given any n, one can construct a 
measure It on a first-order calculus which consists of an equality and finitely 
many monadic predicates, so that p has measure-models with strict equality, but 
for every measure-model (U,  m ) ,  of It, which is with strict equality, there is at 
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least one predicate P, of the calculus, such that p(3xP(x)) > rn(V.~.i~P(ai)), for 
all a t ,  ...,an_ t ~ U. We give the construction without the proof. The monadic 
predicates are P1,...,Pn(~_l)2+l and Qs, where S ranges over all subsets of  
{1 ,2 , - . - ,n (n-1)  2 + 1} whose power is n.  # is any measure having measure- 
models with strict equality and satisfying the following: /a(3xP~(x))= 1 and 
#(3x(Pi(x) A Pj(x))) = 0, for all i ~ j, It( Vx, y(Qs(x) A Q,(y) ~ x = y)) = 1, for 
all S, and, #(Vx(P~(x) -~ Q~(x))) = 1/n whenever i ~ S. One has, o f  course, to 
show that such measures exist and the easiest way of  doing it is to construct a 
measure-model with strict equality which determines a measure satisfying these 
equations. 

On the other hand if  ~ has countably many sentences and finitely many in- 
dividual constants, and # has measure-models with strict equality, then It has 
also a measure-model (U,  m ) ,  with strict equality, such that,  for all 3xt~(x)in 
~(U) ,  there are al,...,ak in U for which m*(3x~b(x))= m*(\/ik=t~b(a~)). This 
follows from a slight modification of  the proof of  Theorem 3. Consider the sets 
C~, i =  1 ,2 , . . . ,  since ~ has countably many sentences each of  them would be 
countable, hence one can arrange e ~ t c t  in a sequence. One proceeds now 
to extend the measure by adding at each step the first a ,  (in the sequence) for 
which all the constants a¢ which occur in ~b were added before. Since by adding 
aaxc,(x) the measure is made to satisfy (3) with respect to ~x$(x), and since after 
each addition we still get a measure whose domains are all the sentences on a 
finite set of individual constants (the set of  individual constants of ~3 is assumed 
to be finite), it follows that the measure-model one gets has the required property. 

The above mentioned assertion is not true if ~ has infinitely many individual 
constants. Let P be a monadic predicate of  ~3 and consider a measure It such 
that #(Vx,y(P(x) A P(y)-~ x = y)) = 1 and #(P(ai)) = el where at, i = t , 2 , . . . ,  
are individual constants of  ~ ,  8~ > 0 for all i, and ~ i  ez = 1. It is easily seen 
that  # has measure-models with strict equality, but in every model ( U , m )  of 
this kind m*(3xP(x))> m(V~klp(b i ) ) for  all bt, . . . ,bke U. The assertion is 
also not  true if  ~3 has no individual constants but uncountably many predicates. 
Let {P~,Q~}a<,o~ be the family of  monadic predicates of ~ ,  where col is the first 
uncountable ordinal. For  every 0 < 2 < co~ let {ea,~}~<a be a set of  real numbers 
such that ca., > 0 for all v < 2 and ~,<aea. v = 1. One can show that there are 
measure models with strict equality determining a measure # such that:  
It(3xPx(x)) = 1 for all 2 < col, It(3x(P~(x) A P~(x)) = 0 whenever 2 ~ v, 
It( Vx, y(Qz(x) A Qx(y) ~ x = y)) = 1 for all 2 < cot, and #(Vx(P,(x) ~ Q~(x))) = ca., 
for all 0 < v < 2 < ~ .  One can also show that if ( U , m )  is such a model then 
thereare co t many 2's such that m*(3xQa(x)) > m(V~= t Oa(b~))for all bl, . . . ,b,  e U. 

As is easily seen, a probability # on ~ (not necessarily defined on all the sentences) 
has a probability-model with strict equality iff some extension of  it to the whole 
set of  sentences of ~ has such a model. 
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A necessary and sufficient condition for the existence of an extension satis- 
fying (5) is: 

(9) If~b e D# and I- ~b -* ~/~ffi i as -- b~, where at, bl e C and at ~ bi for 
1 < i ~ n, then p(~b) = 0. 

Put xk= 3Xx...x~Vy(V~=ly ffi xi). A necessary and sufficient condition for 
the existence of an extension satisfying (6) is: 

(10) If~bl,~b 2 e D# and, for some k, ~-~bt ~ xk and [- x~-~b2, then P(~x) > 0 
implies #(tk2 ) = 1. 

A necessary and sufficient condition for the existence of an extension satis- 
fying (5) and (6) is: 

(11) For all ~bl,~b2eD# and all k, if I -AT=t(al~b ~) A ~ b l ~ k  and 
i-~--.V~ffil(a~=b~) V~b2, where a~,b~eC and a l i b i  for l ~ i ~ n ,  then 
p ( ~ )  > 0 implies #(q~2) = 1. 

The proofs of these statements use,' (4) and techniques similar to those em- 
ployed hitherto; they are omitted here. 

All this holds for measures provided that " 1 "  is replaced by "~u(~ V "" ~b)". 

§4. Symmetric measure-models. A measure-model ( U , m )  is said to be sym- 
metric in U', where U' c U, i f  for every sentence ~b(at, ..., an) of ~(U),  
in which a t , " ' ,  an are all the occurring members of U', m(Jp(at,...I, an)) 
= m(q~(n(ax),..-, n(a,))) whenever n is a permutation of U'.  

THEOREM 3. I f  ~ has a countable set of sentences and # is any measure 
on ~ then # has a measure-model ( U , m )  which is symmetric in U - C, where 
C = set of  individual constants of ~ .  

Proof. Let U be any countable set which includes C, for which A = U -  C ~ ¢. 
Let F be the set of all functions mapping A into A and let Fo be the set of all 
functions whose domain and range are finite subsets of A. I f f e  F and A' ~_ A 
then f[  A' is the restriction o f f  to A' .  For every g ~ Fo put [g] = { f [ f ~  F and 
f] Dg = g} and let F* be the or-field generated by {[g] [ g ~ Fo}. Let v be a count- 
ably-additive measure on F* satisfying: 

(i) v(F) = 1. 
(ii) For every g e Fo if h is a one to one mapping of a finite subset of A onto 

Dg then v([g o hi) = v([g]), where g o h is g composed with h, g o h(x) = g(h(x)). 
(That is to say, v([g]), depends only on the sequence of the values of g.). 

(iii) For every a c A  v({f[feF&a eOf}) = 1, where ( I f =  range of f (the 
countability of A implies that {f[ a e (If} e F*). 

A measure v satisfying (i)-(iii) is easily arrived at. Say A = {al,a2, ""},at #a1 
if i # j (the sequence being infinite or finite). By identifying every f in F with 
the sequence f(aa),f(a2),.. . ,  F is identified with a cartesian power of A, the 
number of coordinates being equal to A. Let v' be the countably-additive measure 
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on all subsets of A obtained by putting v'({ai) ) = ej where every e~> 0 and 
~ie~ = 1. If  we now take v to be the product measure on F then v satisfies (i), 

(ii), (iii). 
Now let m be any measure on ~ (U) .  Let (k = (k(bi, "",  bk) be any senter.ce of  

~(U) ,where  b i , ' " , b k  are all the members of  A occurring in it. Define 
my(~) = ~,m((a(f(bl) , . . . , f (bk)) 'v([ f])  where the sum is taken over all f e F  o 
whose domain is (bl,  "", bk}. If  no member of A occurs in (k then m,(tp) = m(~b). 
Note that if { b D . . . , b k } ~ B ,  where B is any finite subset of A, then 
m,((k) = ~D: =~rn(~b(f(b~), . . . ,f(bk))v([f]),  this is so because if D f =  {b~ ,...,  bk} 
then v([f])  = ~v([g])  where the sum is over all g 's with Dg = B and g] Df = f .  
For all ~b, F q~(bl ,..., bk) implies t- q~(f(bl),-",f(bk)), therefore m, is a measure on 
~(U) .  By (ii) we have m,(tk(bl, ..., bk)) = m,(~(h(bl) , . . . ,  h(bk))) whenever b D ' " ,  bk 
are all the members of A occurring in ~ and h is a permutation of  A. 

Now consider a sentence ~b(bi,'",bk) of the form ~x~b(bl, . . . ,bk,x),where 
h i , . . . ,  bk are all the members of A occurring in it. Assume that for all bl', "",  b~ e A 
we have m(q~(b'l,..', bE)) = sup{m(V,~ l~(b~, ' " ,  bLd,) I d l , ' " , d ,  e U}. Given any 

> 0 there is a finite subset F 1 of Fo,  all of whose members have {ba,...,b~} as 
a domain, such that:  

(a) ~-,:~v~m(¢(f(bi), '",f(bk)))" v([f])  __> (1 - 8)mv(¢(bl,...,bk)) 

Put B ' =  U :  ~F, (If.  There is a finite subset U' of  U such that:  

bl  ¢ t I t t (b) m ( V  a ~ v,~b( 1 , '" ,  bk, d)) > (1 - e). m(~b(bl, ..., bk)), for all bl, . . . ,b~ in B'. 

From (a) and (b) we get: 

(c) ~:~Ft  m (~/,2~ v,~b(f(bl), "'',f(bk),d))" v([f])  >= (1 - e) 2. m~(q~(bl, . . . ,  bk) ) 

Put A' = U' n A.  Since A' is finite, (iii) implies that, for e v e r y f e  Fo, one gets 

v({g I g e F &  g l D f  = f  & g ( D g -  D f )  ~ A'))  = v([ f ] ) ,  

(if X is a set g(X) is defined as {g(x) Ix e X}).  
Consequently there is a finite subset F 2 of  Fo, the domain of  all whose members 

is {bl, ...,bk} kJhl ,  where A 1 is a finite subset of A, such that:  
(d) g(Al) ___ A' for all g e Fz, and , 

v(U, [g]) > (1 - O v ( [ f ] )  

for all f e  F1. 
Put C'  = U' n C ,  then U' = A ' U  C'  and from (d) one gets: 

(e) 

(I - ~) ~$ ~r,rn(V d~ w~(f(bi) ,  " ' ' ,f(bk),d)) '  v( l f ] )  = 

(1 - e) ~,:, e, m ( V  a ~ c,~b(f( b~),.. . , f( b~), d) V ~/ ~ , A,~'(f(bl), . . . , f(b,) ,  d)) " v([f])  < 

~fi~ ezrn(V a ~ c,~k(f( b~),...,f(bg),d) V V a ~ a~b(f(b~),. . . , f(bk),f(d)) ) • v([f'l) 
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Pu¢ U~ = C '  U A~, then, by the definition of m~ 

m,(Vaev,~p(b I, ...,bk, d)) >= ~f~F2m(Vdec,~(f(bl),...,f(bk),d) V VaE.~, ~P((bl), 

Hence it follows from (c) and (e) that "'" ' f (bk) ' f (d)) 'v([f])  

(f) m.(Vd ,u,~(b...., bk,d)) ~_ (t - 03m,(¢(b.-.., bD) 

Hence: 

sup {m,(V~ffi ld/(bt,..., bk, dt)) ] dl,. . . ,  d, e U} > (1 - e)3mv(¢(bi,..., bk) ) 

Sending ~. to 0 we get the inequality which implies that the supremum on the 
left side is equal to mv(¢(bl, ..., b~)). Consequently: 

If  m satisfies (3) so does m~. 
Now let (U,  m )  be any measure-model for ~u with U < No. Let m* be the 

unique extension of m to ~(U)  satisfying (3). (m*)v satisfies (3) and coincides 
with # on D/~. The restriction of (m*)v to ~0(U)is my, therefore (U,m~) is the 
required measure-model, q.e.d. 

Note that if all the individual constants occurring in the sentences of D# are 
members of C1, where Ct is some subset of C, then one can construct a measure- 
model for # which is symmetric in U -  C1, by replacing in the given construction 
C by C1. In particular if C~ = ~ one gets a measure-model symmetric in U. 

The theorem is not true for ~ with an uncountable set of sentences where 
/~# > No. Consider the following example: Let ~ be with no individual con- 
stants, let P{,~ e ~. be its predicates, where every P{ is a one-place predicate and 

is uncountable. Let # be a measure on ~ such that ju(3x(P~(x) A Pn(x)) = 0 
whenever ~ y ,  and 1~(3xP~(x))= 1 for all ~e  .=.. Let (U, rn) be a measure- 
model for/~. If the model is symmetric in U we have rn(P~(a)) = m(P~(b)) for 
all a, b e U, hence we must have re(Pc(a)) > 0 for all ~ ~ r=, a e U. Hence in 
{m(P~(a))] ~ e -=} there are infinitely many numbers ~ ~, where e is some fixed 
number > 0. That is, m(Pg(a)) >= ~ for all ~ e ~ ' ,  where ~ '  > No. Also 
m(P~(a) A P~(a)) = 0 for all ~ ~ t/, therefore m(V~=tP~,(a)) = ~-,~=tm(Pg,(a)) 
~_ n" 8 for all ~ t , ' " ,  ~ e E', contradicting the boundedness of m. 

If  !~ has an equality, then the measure-model constructed in the proof of  
Theorem 4 is not with a strict equality. In fact,there are measures # on first order 
calculi with equality, having countably many sentences, which do not have 
measure-models symmetric in U - C  with strict equality. For example, let !~ 
have only one one.place predicate P and equality. Let # be a measure on ~ such 
that #(3xP(x)) = 1, #(Vx, y(P(x)/~ P(y) ~ x = y)) = 1, and 

~(~x~,-..,x~ Vy(V~ffi ty = x,)) = 0 

for all k. If (U,  m) is a measure-model for/~ then U ~ 1'¢o, and if it is symmetric 
in U then m(P(a)) = ~ > 0 for all a e U. If it is with strict equality then we must 
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have m(P(a) A P(b)) = 0 whenever a ~ b. Hence m(V~f lP(a i )  ) = n '~ ;  taking 
n large enough we get the contradiction m(~xP(x) )  > 1. 

The problem of  characterizing those theories (i.e. measures having the values 
0 and 1) which possess a measure-model with strict equality, satisfying also 
the symmetry condition, seems to be difficult. As was pointed out by Ryll- 
Nardzewski, the theory of  a linear dense ordering without first and lastelements 
has such a model. 

§5. An example. The following is a simple example of  a measure-model 
suggested to the author by M. Rabin and D. Scott. Let ~3 be without individual 
constants, with or without equality. Let U be an infinite set. Define rn on ~o(U) 
by first putting m(R(a 1 , ' " ,  an)) = q for all predicates R of ~3 and all a l ,  "", a~ • U, 
excludin'g the case where R(ax,a2) is a x = a z . q is some fixed number, 0 < q < 1. 
Next, for every conjunction A~=lq~l A A~=k+l "" ~bi, where ~b I are atomic sen- 
tences which are not  equalities and ~b~#~bj for i # j ,  define m to be 
qk(1 _ q)n-k. This defines m for all sentences of  ~o(U) which do not involve 
equalities. I f  ~ has equality put m(a = b) = 0 whenever a # b, this determines 
m completely. <U, m> is a measure-model symmetric in U and the atomic sen- 
tences are " independent"  in the sense that if ~b, ¢ • ~o(U) and no atomic sen- 
tence, besides equalities, is a part of both q~ and ~b then rn(~ A ~k) = m(~). m(~,). 
Let m* be the extension of m to ~(U)  satisfying (3); we claim that whenever 
~b,O•~(U) and no individual constant occurs both in q~ and ~b then 
m*(~b A ~') = m*(q~)" m*(~k). This is proved for formulas in prenex normal form 
by induction on the sum of  the numbers of alternating blocks of quantifiers ap- 
pearing in the two sentences. I f  ~ ,~  • ~o(U) this is obvious. Assume, for the 
sakeofsimplicity, that~b = 3Xdpl(X)where~pl(x)starts withauniversalquantifier.  
Let A, B be the sets of  constants occurring in ~b and if, respectively. Consider 
Vo ~,~,~bl(a), where A' is some finite subset of  U. Since A n B =  ¢ there is a 
permutation h of  U, satisfying h(a) = a for all a • A and B ~ h(A')  = ¢. The 
symmetry of m implies that m* is also symmetric in U hence m*(V o ~t,~bl(a)) 
= m *(V,~h(,~')~ b 1 (a)). It follows that m*(¢) = sup { m*(~/~= 1 ¢ 1 (ai))la l , ' " ,  a,e U - B}. 
Consider now a sequence of  sentences al ,oZ, . . .  , if F a~-~ a~+x and ~-tr~ tr for 
i = 1,2,.-. and if m*(a) = limi..oom*(a~) then, for every x, m*(a A z) = lim~_.~o 
m*(a~ A T); this becomes evident once we regard m* as a countably additive 
measure on sets of  models. Consequently we get 

m*(~ A q~) = sup {m*(~k A ~/~ffil~bl(a~)[ a l ,  "",an • U - B} 

hence, since V~=l(~blai) is logically equivalent to a formula with less alter- 
nating blocks, we get: 

m*(~b A ~b) = sup {m*(~k). m*(V~--x~(a,)] a~, ".., a, • V - B} = rn*(~b), m*(~) 

The case where the first block of existential quantifiers has more than one quan- 
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tifier is treated similarly. The case where the first quantifier is a universal one 
results from this by an easy calculation. 

If  ~ is the set of sentences of ~ we get, for every ~e ~ ,  m*(~b) = m*(~b A ~b) = 
(m*(~b)) 2, hence m*(~b) is either 0 or 1. Therefore (U,m> is a measure-model 
of  a complete theory. Note that this is some kind of zero-one law, however, the 
author does not see a way to deduce it directly as a special case of the zero- 
one law in probability theory. 

To find out what complete theory is determined by (U,  m) proceed as follows. 
Assume ~ has an equality. Let x 1," ' ,  xn be distinct variables of ~ .  By a complete 
diagram of x l , ' " ,xn  we mean a consistent conjunction of atomic formulas and 
negations of atomic formulas formed by using xl, ...,x~ and the predicates be- 
longing to some finite set ~ (which does not include - )  so that, for every  k-place 
predicate R of ~ and every sequence i l , '" ,  ik, 1 < ij < n, (the ij's not necessarily 
distinct), either R(x~l,...,x~k ) or ,,, R(xil,...,x~k ) is a conjunct. A complete dia- 
gram a2(Xl,.",X~+k) extends another complete diagram al(Xl,'",x~) if both 
use the same predicates and F tr2--,tr 1. It is not difficult to show that 
m*( 3xl, . . . ,  X, ax(Xl,..., xn)) = 1 and m*( Vxl, ..., x~ 3y(al(xl,...,x~)--, /~.~ 1 y~x~ 
A a2(x~,...,x,,y))) = 1 whenever al and a2 are complete diagrams and a2 extends 
try. Let • be the set of all the sentences of these forms. Every member of • is a 
theorem in the complete theory. Moreover • is a set of axioms for this theory. 
To see it take the case where ~3 has finitely many predicates. In that case two 
countable models (in the usual sense) in which • holds are isomorphic. One 
proves this using the argument which proves the isomorphism of two countable 
dense linear orderings without extreme elements. The basic fact here is that given 
any isomorphism between two finite submodels and extending one of them by 
adding any extra element, one can add a suitable element to the other and extend 
the isomorphism to the bigger submodels. This follows directly from tI). 

A model for this theory can be described as "most general" in the sense that 
every possible finite model is realised there as a submodel, and for every finite 
submodel every possible finite extension of it is realised. 

If ~ has infinitely many predicates the same holds for all subtheories obtained 
by restriction to a finite family of predicates. However, there will always be two 
countable models for the theory which are not isomorphic. 

If ~ is without identity but has at least one k-place predicate, where k :>2, 
then the situation is essentially the same. One gets a similar set, ~,  except that 
in the sentences the part A, '=lY~ x~ is to be omitted. Let ~ '  be the calculus 
obtained by adding an equality to ~ .  Assume, for simplicity, that R is a 2-place 
predicate of ~3. If trx(X 1, ...,x,) is a complete diagram in which R occurs, and 
a2(xl, ...,x~,y) is a complete diagram extending at, let aa'(xl, ...,xn,y,y') be a 
complete diagram which extends tr2 and has as conjuncts all the formulas 
R(y',x~), 1 < i< n and ,~R(y',y).  • implies Vxl, . . . ,x,3y, y ' ( tr l (xl , . . . ,x , )~ 
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a 2 ' ( x l , ' " , x , , Y ' ,  y)), but this, in !~', logically imples Vx~, . . . ,x ,3y( tr i (x~, . . . ,x , )  
A i= ly  ~ xi A trz(Xl, '", x,, y)). Since every complete diagram in which R does 

not occur is logically equivalent to a disjunction of complete diagrams in which 
R occurs, the same holds if R does not occur in tr 1 . Therefore all the properties 
of  the case in which we have equality carry over to this case. 

I f  !~ has no equality and all its predicates are one-place predicates, then the 
theory has as axioms all the sentences 3x~b(x) where tk(x ) is any consistent quan- 
tifier free formula. In case of a finite number of  predicates this theory has finite 
models as well. 

There is an easy way to eliminate quantifiers in the complete theory [deter- 
mined by(U,  m ) .  Let ~ be a quantifier-free formula with free variables x a, "",  x,, y. 

n dr It is logically equivalent to a formula of the form ao V Vi=l (  i A z~(y)) where y 
does not occur in a~, 0 < i < n,  y occurs in every atomic formula which is a 
part of  zi(y), 1 < i < n, I- Vxl,  ..., Xk ~ (a~ A %) whenever i ~ j ,  and zi(y) is not 
a tautology, 1 < i <- n. Now let a~, z'i be obtained by some fixed replacement of  
X~,'.',Xk by members of U. An easy calculation shows that 

• k t \ 1 \ 1 " ~ 1  o,  t A  t lnf{m(Aj=l(~o v v , = t  ~ , \ z i ( a j ) ) l a s , ' " , a k e  U} = m ( ~ )  

Consequently Vy¢(y) is equivalent in the theory to ao. The elimination is effec- 
tive since, given ~ ,  one can find ~o effectively. 

Note that the theory one gets does not depend on the particular q with which 
one starts, provided only that 0 < q < 1. The argument which was used to prove 
that (U,  m)  determines a complete theory can be used to prove that any measure- 
model satisfying the following requirements determines a complete theory. 

(I) ( U , m )  is symmetric in U and U is infinite• 

(II) If  ~b,~9 ~ ~o(U) and no individual constant occurs in both then 

m(q~ A ¢) = rn(~b), re(if) 

It is not difficult to show that the theory of a dense linear ordering without 
extreme elements has such a model. 
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